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Abstract

On the results of finding the eigenvalue-eigenvector pairs of the discrete Laplacian of a rectangular
m*n grid.

1 Introduction

The original motivation of this paper was to prove the conjectures of Timothy Bantham’s 2006 REU paper,
The Discrete Laplacian and the Hotspot Conjecture. Bantham’s paper was motivated by the continuous
hotspot conjecture of Jeff Rauch(1974). However, the conjecture was proven to be false. Bantham’s paper
conjectures on the second eigenvector of the Laplacian of a rectangular grid. However, there have been
issues with creating a meaningful analogue of the Neumann boundary conditions for the discrete case. Thus,
the original intent of proving the hotspot conjecture has put on hold for this paper, and will discuss upon
the second eigenvalue-eigenvector pair of a rectangular grid. All in all, Timothy Bantham’s conjecture 3.1
has been shown to be correct with a more complete proof, conjecture has been proven to be correct, and
conjecture 3.3 proven false, but almost correct.

2 Definitions

Rectangular grid, R(m,n): A graph connected such that it has 4 corner vertices which have two edges
each, m-2 vertices that have 3 edges which make up the ”short edge of a rectangle” and n-2 vertices that
have 3 edges each which make up the ”long edge of a rectangle” and (n-2)(m-2) inner vertices which each
have four edges. When n=m, we shall call it a square, S(n).

Discrete Laplacian: A matrix L such that Li,j = −1 if i 6= j and there is an edge between vertices i and
j and = 0 if there is no edge. Li,i = −ΣLi,j . This is essentially the same as a Kirchoff matrix.

Second Eigenvalue: The second smallest eigenvalue.

Fiedler Vector: The eigenvector associated with the second eigenvalue.

3 Set up

The vertices of the R(m,n) will be enumerated as such. Imagining the rectangular grid with the longest sides
running horizontally, the upper left most vertex shall be numbered 1, the vertex to vertex right as 2, and so
on until we reach the rightmost vertex of that row, which shall be numbered as n. Then, the process shall be
repeated with the row beneath the current row, starting again at the leftmost, and so on. The essential part
of this numbering is that it is numbered by rows, so that the eigenvector can be split up into ”row sections”.

Using this numbering technique, our laplacian matrix K looks like
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K =



D1 −I 0

−I D2
. . .

. . .

. . . D2 −I
0 −I D1


(1)

and

D1 =



2 −1 0

−1 3
. . .

. . .

. . . 3 −1
0 −1 2


D2 =



3 −1 0

−1 4
. . .

. . .

. . . 4 −1
0 −1 3



(Note K is n ∗m x n ∗m and D1, D2 are both nxn and m < n for a rectangular grid) An example matrix
is shown in Bantham’s paper.

Now, to solve for the eigenvalues and eigenvectors, we must solve this equation.

KΦ = λΦ (2)

Since K is a laplacian matrix, it is clear that 0 is an eigenvalue, and since the rectangular grid is connected,
hence there is only one connected component, the second eigenvalue will be non-zero.

Theorem:The eigenvalues of the laplacian matrix for R(m,n) are of the form

λk,l = (1−
cos( 3πk

2n )

cos(πk2n )
) + (1−

cos( 3πl
2m )

cos( πl2m )
) (3)

Let θ = πk
n and ψ = πl

m
This simplifies to

λk,l = (2sin
θ

2
)2 + (2sin

ψ

2
)2 (4)

with eigenvectors as

Φk,l = ~(φ(x, y)) =




φ(1, 1)
φ(2, 1)

...
φ(n, 1)


φ(1, 2)
φ(2, 2)

...
φ(n, 2)


...

φ(1,m)
φ(2,m)

...
φ(n,m)





(5)
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where

φ(x, y) = cos(
π

n
k(x− 1

2
))cos(

π

m
l(y − 1

2
)) (6)

3.1 Proof

Written out, (7) becomes

D1Φ1∼n,1 − IΦ1∼n,2 = λΦ1∼n,1

−IΦ1∼n,1 +D2Φ1∼n,2 − IΦ1∼n,3 = λΦ1∼n,2

...

−IΦ1∼n,m−2 +D2Φ1∼n,m−1 − IΦ1∼n,m = λΦ1∼n,m−1

−IΦ1∼n,m +D1Φ1∼n,m = λΦ1∼n,m

Where it is understood that Φ1∼n,1 and similar terms are equivalent to (φ(1, 1), φ(1, 1), · · · , φ(n, 1))T and
the like, where φ(x, y) = cos(πnk(x− 1

2 ))cos( πm l(y −
1
2 ))

Let us observe D1Φ1∼n,1 − IΦ1∼n,2 = λΦ1∼n,1 which when written out is

2φ(1, 1)− φ(2, 1)− φ(1, 2) = λφ(1, 1)

−φ(1, 1) + 3φ(2, 1)− φ(3, 1)− φ(2, 2) = λφ(2, 1)

...

−φ(n− 2, 1) + 3φ(n− 1, 1)− φ(n, 1)− φ(n− 1, 2) = λφ(n− 1, 1)

−φ(n− 1, 1) + 2φ(n, 1)− φ(n, 2) = λφ(n, 1)

To show that Φk,l is in fact an eigenvalue, we must show that the above equalities hold.
Let us start with the base case, i.e. the first line.

2φ(1, 1)− φ(2, 1)− φ(1, 2) = λφ(1, 1)

2cos(
θ

2
)cos(

ψ

2
)− cos(3θ

2
)cos(

ψ

2
)− cos(θ

2
)cos(

3ψ

2
) = λcos(

θ

2
)cos(

ψ

2
)

2cos( θ2 )cos(ψ2 )− cos( 3θ
2 )cos(ψ2 )− cos( θ2 )cos( 3ψ

2 )

cos( θ2 )cos(ψ2 )
= λ

2−
cos( 3θ

2 )

cos( θ2 )
−
cos( 3ψ

2 )

cos(ψ2 )
= λ

(1−
cos( 3θ

2 )

cos( θ2 )
) + (1−

cos( 3ψ
2 )

cos(ψ2 )
) = λ

We see that this agrees with our conjectured λk,l Now for the other boundary condition, i.e. the last line.

3



−φ(n− 1, 1) + 2φ(n, 1)− φ(n, 2) = λφ(n, 1)

−cos(πk
n

(n− 1− 1

2
))cos(

πl
m

2
) + 2cos(

πk

n
(n− 1

2
))cos(

πl
m

2
)− cos(πk

n
(n− 1

2
))cos(

πl

m
(2− 1

2
)) = λφ(n, 1)

−cos(πk
n

(n− 3

2
))cos(

πl
m

2
) + 2cos(

πk

n
(n− 1

2
))cos(

πl
m

2
)− cos(πk

n
(n− 1

2
))cos(

πl

m
(
3

2
)) = λφ(n, 1)

−cos(πk − 3πk

2n
)cos(

πl

2m
) + 2cos(πk − πk

2n
)cos(

πl

2m
)− cos(πk − πk

2n
)cos(

3πl

2m
) = λφ(n, 1)

−(−1)kcos(
3πk

2n
)cos(

πl

2m
) + 2(−1)kcos(

πk

2n
)cos(

πl

2m
)− (−1)kcos(

πk

2n
)cos(

3πl

2m
) = λφ(n, 1)

Since φ(n, 1) = (−1)kcos(πk2n )cos( πl2m ), we have

λ =
−(−1)kcos( 3πk

2n )cos( πl2m ) + 2(−1)kcos(πk2n )cos( πl2m )− (−1)kcos(πk2n )cos( 3πl
2m )

(−1)kcos(πk2n )cos( πl2m )

= 2−
cos( 3πk

2n )

cos(πk2n )
−
cos( 3πl

2m )

cos( πl2m )

This agrees with λk,l as well
Now, on to the general case for 2 ≤ r ≤ n− 1

−φ(r − 2, 1) + 3φ(r − 1, 1)− φ(r, 1)− φ(r − 1, 2) = λφ(r − 1, 1)

−cos(θ(r − 5

2
))cos(

ψ

2
) + 3cos(θ(r − 3

2
))cos(

ψ

2
)− cos(θ(r − 1

2
))cos(

ψ

2
)− cos(θ(r − 3

2
))cos(

3ψ

2
) = λφ(r − 1, 1)

−cos(θ(r − 5
2 ))cos(ψ2 ) + 3cos(θ(r − 3

2 ))cos(ψ2 )− cos(θ(r − 1
2 ))cos(ψ2 )− cos(θ(r − 3

2 ))cos( 3ψ
2 )

cos(θ(r − 3
2 ))cos(ψ2 )

= λ

−cos(θ(r − 5
2 ))

cos(θ(r − 3
2 ))

+ 3−
cos(θ(r − 1

2 ))

cos(θ(r − 3
2 ))
−
cos( 3ψ

2 )

cos(ψ2 )
= λ

Using the Cosine sum-to-product formula, we have
cos(θ(r − 5

2 )) + cos(θ(r − 1
2 )) = 2cos(θ(r − 3

2 ))cos(θ)
Furthermore
2cos(θ)− 1 =

cos( 3θ
2 )

cos( θ2 )

−cos(θ(r − 5
2 ))

cos(θ(r − 3
2 ))

+ 3−
cos(θ(r − 1

2 ))

cos(θ(r − 3
2 ))
−
cos( 3ψ

2 )

cos(ψ2 )
= λ

3− (
cos( 3θ

2 )

cos( θ2 )
+ 1)−

cos( 3ψ
2 )

cos(ψ2 )
= λ

2−
cos( 3θ

2 )

cos( θ2 )
−
cos( 3ψ

2 )

cos(ψ2 )
= λ

This is consistent as well, so the case has been proven for D1Φ− IΦ = λΦ
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Now, we must prove for

−IΦ1∼n,1 +D2Φ1∼n,2 − IΦ1∼n,1 = λΦ1∼n,2

...

−IΦ1∼n,m−2 +D2Φ1∼n,m−1 − IΦ1∼n,m = λΦ1∼n,m−1

−IΦ1∼n,m−1 +D1Φ1∼n,m = λΦ1∼n,m

The last line is already proved by using the fact that Φ1∼n,m = (−1)Φ1∼n,1 and Φ1∼n,m−1 = (−1)Φ1∼n,2.
Now to prove for 2≤ q ≤ m− 1

−IΦ1∼n,q−1 +D2Φ1∼n,q − IΦ1∼n,q+1 = λΦ1∼n,q (7)

Now, note that Φ1∼n,q = (cos θ2 , cos
3θ
2 , · · · , cos

(2n−1)θ
2 )T cos (2q−1)ψ

2

Let ~v = (cos θ2 , cos
3θ
2 , · · · , cos

(2n−1)θ
2 )T

−IΦ1∼n,q−1 +D2Φ1∼n,q − IΦ1∼n,q+1 = λΦ1∼n,q

−cos (2q − 3)ψ

2
~v +D2cos

(2q − 1)ψ

2
~v − cos (2q + 1)ψ

2
~v = λcos

(2q − 1)ψ

2
~v

Using the sum to product formula, we have

cos (2q−3)ψ
2 + cos (2q+1)ψ

2 = 2cos (2q−1)ψ
2 cosψ

−cos (2q − 3)ψ

2
~v +D2cos

(2q − 1)ψ

2
~v − cos (2q + 1)ψ

2
~v = λcos

(2q − 1)ψ

2
~v

−2cosψ~v +D2~v = λ~v

−(
cos( 3ψ

2 )

cos(ψ2 )
+ 1)~v +D2~v = λ~v

(D2 − I)~v = (λ+
cos( 3ψ

2 )

cos(ψ2 )
)~v

D1~v = (λ+
cos( 3ψ

2 )

cos(ψ2 )
)~v

D1~v − I~v = (λ+
cos( 3ψ

2 )

cos(ψ2 )
− 1)~v

D1Φ− IΦ = λΦ with λk,l = (1− cos( 3θ
2 )

cos( θ2 )
)(1− cos( 3ψ

2 )

cos(ψ2 )
) was proven above already.

Setting l=0, We have λk,0 = (1− cos( 3θ
2 )

cos( θ2 )
) and Φk0 = ~v ∗ cos(0) = ~v. Thus, we see that our above set of

equations boiled down to

λ = (1− cos( 3θ
2 )

cos( θ2 )
) + (1− cos( 3ψ

2 )

cos(ψ2 )
).

λ agrees with λk,l, thus we know λk,l is a general form of the eigenvalue with Φk,l as the eigenvectors.
It is only necessary to show that these are the n ∗m eigenvalue-eigenvector pairs. Notice that ~v can take
any k value from 1,· · · , n, and denote these vectors as ~vi for 0 ≤ i ≤ n− 1. By construction of ~vi it is clear
that they are independent. Now, l can take m distinct values and likewise, it will yield different values for
cos(πlm (y − 1/2)). Since

Φk,l = (cos(πlm
1
2 )~vi, cos(

πl
m

3
2 )~vi, · · · , cos(πlm

m−3
2 ))~vi, cos(

πl
m
m−1
2 )~vi)

T , we see that there are m ∗ n indepen-
dent vectors,Φk,l, for 1 ≤ k ≤ n; 1 ≤ l ≤ m.
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It is also clear that there at most m ∗ n distinct values for λk,l, and since each eigenvalue is associated
with an eigenvector, we see that there are m ∗ n distinct eigenvalue-eigenvector pairs. Therefore, Φk,l, λk,l
are indeed the general form of the eigenvectors and eigenvalues respectively. �

Theorem: The second eigenvalue and the an associated fiedler eigenvector for R(n,m) where m < n, is
associated with (k,l) = (1,0)

Proof: λk,l = (2sinπ(k)2n )2 + (2sin(π(l)2m ))2 ≥ 0 with equality if and only if (k, l) = (0, 0). So the smallest
eigenvalue aside from λ0,0 must be of the form λ0,l or λk,0.

λ0,l = (2sin(π(l)2m ))2

dλ0,l

dl = 2π
2msin( πl2m )

This is always positive on (1,m), so the minimum value of λ0,l is attained on λ0,1
λk,0 = (2sinπ(k)2n )2

dλk,0
dk = 2π

2nsin(πk2n )
Similarly is always positive on (1,n), so the minimum value of λk,0 is attained on λ1,0
Comparing λ1,0 = (2sin π

2n )2 and λ0,1 = (2sin( π
2m ))2. Since m < n by construction, it follows that

λ0,1 > λ1,0. �

4 Remark

When the eigenvalues have multiplicty greater than one, we observe different eigenvectors than those that
we get from Matlab. This is because if we have two eigenvectors Φ1,Φ2, both with eigenvalue λ, then any
linear combination of Φ1 and Φ2 are also solutions.

K(c1Φ1 + c2Φ2) = Kc1Φ1 +Kc2Φ2 = c1λΦ1 + c2λΦ2 = λ(c1Φ1 + c2λΦ2)

5 Side Remark

For any connected graph whose laplacian L has the the laplacian of R(2,3) as a proper submatrix, then, by
using the Cauchy-interlacing theorem, we can show that the second eigenvalue of L is at most 1, and since
it is connected, we know the first eigenvalue is 0, and the second eigenvalue is greater than 0. Using this, a
method to find the eigenvector and eigenvalue of L is to use the Inverse Power iteration method by letting
our ”approximation” of the eigenvalue be 1

2 .

6 Further Work

1. Explore the meanings of the other eigenvalues
2. Look at the case of m=n
3. Continue Timothy Bantham’s work
4. Explore the meaning of letting m be constant and taking the limit of the second eigenvalue as n goes to
infinity.
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